

Correlation of Introduction to Anatomy and Physiology (Goodheart-Willcox Publisher ©2024) to Oregon High School Life Sciences Standards (2022)

Introduction to Anatomy and Physiology covers all body systems using a student-friendly writing style that makes complex subjects easier to understand. Written specifically for the high school market, the chapters in this textbook are divided into lessons, providing content in a manageable format for the student. To add realism, clinical case studies and real-world applications enhance student interest and involvement. An abundance of study aids, such as learning objectives, lesson summaries, and extensive assessment opportunities increase students' ability to succeed in this challenging course.

Standards / Objectives / Indicators	Textbook Pages	
HS.LS1: From Molecules to Organisms: Structure and Processes		
HS.LS1.1. Construct an explanation based on evidence for how the structure of DNA determines the structure of proteins which carry out the essential functions of life through systems of specialized cells.	Chapter 2: <i>In the Lab</i> #2, 60; <i>Thinking</i> <i>Critically</i> , 91 Supporting content: <i>Proteins</i> , 51-52; <i>DNA</i> , 56-57; DNA, RNA, and Proteins, 68-71	
HS.LS1.2. Develop and use a model to illustrate the hierarchical organization of interacting systems that provide specific functions within multicellular organisms. (LS1.A)	Chapter 1 Supporting content: Engineering Practices, 24; Step 5: Analyzing and Evaluating the Data with Statistical Tools, 28-29	
HS.LS1.3. Plan and conduct an investigation to provide evidence that feedback mechanisms maintain homeostasis.	Chapter 1: Check Your Understanding #1-4, 18; In the Lab #2-3, 19 Chapter 11: In the Lab #1, 461 Supporting content: Homeostasis, 15-18	

Correlation of Introduction to Anatomy & Physiology to Oregon High School Life Sciences Standards—page 2

Standards / Objectives / Indicators	Textbook Pages
HS.LS1.4. Use a model to illustrate the role of cellular division	Chapter 15: In the Lab #1, 617
(mitosis) and differentiation in producing and maintaining	Supporting content: Embryonic and Fetal
complex organisms.	Development, 615-616
	Life Span Development features, 85, 105,
	137, 208, 259, 286, 295, 303, 307, 335, 372,
	406, 438, 491, 555, 591, 621, 631
HS.LS1.5. Use a model to illustrate how photosynthesis transforms	This standard is beyond the scope of the
light energy into stored chemical energy.	program.
HS.LS1.6. Construct and revise an explanation based on evidence for	Chapter 2
how carbon, hydrogen, and oxygen from sugar molecules may	Supporting content: <i>Molecules of Life</i> , 48-59
combine with other elements to form amino acids and/or other	
large carbon-based molecules.	
HS.LS1.7. Use a model to illustrate that cellular respiration is a	Supporting content:
chemical process whereby the bonds of food molecules and	Chapter 2: <i>ATP</i> , 57-58
oxygen molecules are broken and the bonds in new compounds	
are formed resulting in a net transfer of energy.	
HS.LS2: Ecosystems: Interactions, Energy, and Dynamics	
HS.LS2.1. Use mathematical and/or computational representations	This standard is beyond the scope of the
to support explanations of factors that affect carrying capacity of	program.
ecosystems at different scales.	
HS.LS2.2. Use mathematical representations to support and revise	This standard is beyond the scope of the
explanations based on evidence about factors affecting	program.
biodiversity and populations in ecosystems of different scales.	
HS.LS2.3. Construct and revise an explanation based on evidence for	This standard is beyond the scope of the
the cycling of matter and flow of energy in aerobic and	program.
anaerobic conditions.	
HS.LS2.4. Use mathematical representations to support claims for	This standard is beyond the scope of the
the cycling of matter and flow of energy among organisms in an	program.
ecosystem.	
HS.LS2.5. Develop a model to illustrate the role of photosynthesis	This standard is beyond the scope of the
and cellular respiration in the cycling of carbon among the	program.
biosphere, atmosphere, hydrosphere, and geosphere.	
HS.LS2.6. Evaluate the claims, evidence, and reasoning that the	This standard is beyond the scope of the
complex interactions in ecosystems maintain relatively	program.
consistent numbers and types of organisms in stable conditions,	
but changing conditions may result in a new ecosystem.	
HS.LS2.7. Design, evaluate, and refine a solution for reducing the	Chapter 1: What Research Tells Us about
impacts of human activities on the environment and	Research, Taking it Further #1-2, 30
biodiversity.	
HS.LS2.8. Evaluate the evidence for the role of group behavior on	This standard is beyond the scope of the
individual and species' chances to survive and reproduce.	program.
HS.LS3: Heredity: Inheritance and Variation of Traits	
HS.LS3.1. Ask questions to clarify relationships about the role of DNA	Chapter 2: Check Your Understanding #2-3,
and chromosomes in coding the instructions for characteristic	58
traits passed from parents to offspring.	Supporting content:
	Chapter 2: <i>DNA</i> , 56-57
	Chapter 15: Types of Reproduction, 612;
	Mitosis versus Meiosis, 613-615

Correlation of Introduction to Anatomy & Physiology to Oregon High School Life Sciences Standards—page 3

Standards / Objectives / Indicators	Textbook Pages	
HS.LS3.2. Make and defend a claim based on evidence that	Chapter 15	
inheritable genetic variations may result from: (1) new genetic	Supporting content: <i>Meiosis</i> , 614-615; <i>What</i>	
combinations through meiosis, (2) viable errors occurring during	Research Tells Us about Genetic Research	
replication, and/or (3) mutations caused by environmental	and Cancer Treatment Breakthroughs, 650	
factors.		
HS.LS3.3. Apply concepts of statistics and probability to explain the	Chapter 15: <i>In the Lab</i> #1, 617	
variation and distribution of expressed traits in a population.		
HS.LS4: Biological Adaptation: Unity and Diversity		
HS.LS4.1. Communicate scientific information that common ancestry	This standard is beyond the scope of the	
and biological evolution are supported by multiple lines of	program.	
empirical evidence.		
HS.LS4.2. Construct an explanation based on evidence that the	This standard is beyond the scope of the	
process of evolution primarily results from four factors: (1) the	program.	
potential for a species to increase in number, (2) the heritable		
genetic variation of individuals in a species due to mutation and		
sexual reproduction, (3) competition for limited resources, and		
(4) the proliferation of those organisms that are better able to		
survive and reproduce in the environment.		
HS.LS4.3. Apply concepts of statistics and probability to support	This standard is beyond the scope of the	
explanations that organisms with advantageous heritable trait	program.	
tend to increase in proportion to organisms lacking this trait.		
HS.LS4.4. Construct an explanation based on evidence for how	This standard is beyond the scope of the	
natural selection leads to adaptation of populations.	program.	
HS.LS4.5. Evaluate the evidence supporting claims that changes in	This standard is beyond the scope of the	
environmental conditions may result in: (1) increases in the	program.	
number of individuals of some species, (2) the emergence of		
new species over time, and (3) the extinction of other species.		
HS.LS4.6. Create or revise a simulation to test a solution tot mitigate	Supporting content: Chapter 1: What	
adverse impacts of human activity on biodiversity.	Research Tells Us about Research	