

18604 West Creek Drive • Tinley Park, IL 60477 • 800.323.0440 • www.g-w.com

Goodheart-Willcox Publisher Correlation of Agricultural Mechanics and Technology Systems ©2017 to Tennessee Department of Education Standards Course: Principles of Agricultural Mechanics (5944)

	STANDARD	CORRELATING PAGES		
Safety				
1	Identify the benefits of knowing and	19, 88–114, 116, 117, 913–914, 995		
	applying basic safety procedures in both an			
	agricultural laboratory and workplace.			
	Interpret current Occupational Safety and			
	Health Administration (OSHA) guidelines to			
	conduct a compliance review of the			
	agricultural laboratory, including a written			
	summary justifying the findings with			
	recommendations for improving the safety			
2	of working conditions.	02 114 116 117 104 106 000 002 042 046		
2	Review common laboratory safety	93–114, 116, 117, 184–186, 800–802, 843–846,		
	procedures for tool and equipment	854, 865–866, 995		
	operation in the agricultural mechanics laboratories, including but not limited to			
	accident prevention and control procedures.			
	Demonstrate the ability to follow safety and			
	operational procedures in a lab setting and			
	complete a safety test with 100 percent			
	accuracy.			
	Project Mana	gement		
3	Outline the basic principles and procedures	54–60, 62, 256–273, 277, 308–320, 389–390,		
	of effective project planning. Create and	497–500, 516, 709–712, 741		
	present a project plan for an agricultural			
	mechanics project or a supervised			
	agricultural experience program related to			
	agriculture mechanics.			
4	Using industry-specific terminology, identify	258–261, 276, 272–273, 277, 432, 497–500,		
	components for preparing a budget and cost	517, 675, 709–712, 741		
	estimate. Develop a budget using a scaled			
	drawing or blueprint to construct or repair			
	an agriculture mechanics project.			
	Engine and Motor			
5	Compare and contrast the chief features,	600–620, 623, 898–914, 917, 924–934, 936,		
	functions, and applications of two-cycle	937, 956–970, 975		
	engines, four-cycle engines, and electric			
	motors. Citing technical references,			
	recommend a maintenance schedule			
	specific to the working environment (such as			
	indoor/outdoor conditions, exposure to heat			

Goodheart-Willcox Publisher

18604 West Creek Drive • Tinley Park, IL 60477 • 800.323.0440 • www.g-w.com

	or cold) of the engine and/or motor.	
	Conduct the appropriate maintenance with	
	adherence to specifications outlined in the	
	schedule.	
6	Identify and differentiate between the	18, 66–70, 604–611, 623, 910–911, 917, 920–
	different types of fuel and power sources	924, 936, 937
	used in conjunction with engines and	
	motors. Recommend the types and sizes of	
	engines/motors best suited for a range of	
	applications. Provide a written justification,	
	citing specific textual evidence, to support	
	the recommendation.	
	Surveyi	ng
7	Using topographical maps and appropriate	334–343, 347, 497–499, 516
,	mathematical equations, determine the	
	acreage of a specific plot of land. Document	
	and defend the methods used to arrive at	
	the result, annotating calculations and field	
	notes in a manner easily retrieved by other	
	readers.	
8	Apply precision surveying processes and	75–77, 85
0	geographic information system (GIS)	/3-//, 85
	technology to calculate the acreage of a	
	specific plot of property. Using field notes	
	and digital data (such as GIS overlays),	
	develop a written survey report of the	
	designated plot to include, at minimum,	
	measurements, degrees, markers, and other	
	notable geographic parameters.	
	Irrigation and	
9	Analyze the interrelationships among plants,	326–330, 346, 471–473, 478–485, 489, 491,
	water, air, and soil to maximize the health	650–654, 674, 675
	and productivity of agricultural crops.	
	Calculate the permeability rate, available	
	water holding capacity, pH levels, and	
	nutrient levels for a specific soil type.	
10	Apply physics concepts governing various	470–478, 481–486, 623, 650–671, 674, 675
	pumping systems and delivery options to	
	achieve the optimum irrigation and drainage	
	required for row crop, greenhouse, and	
	nursery operations in various soil-plant-	
	climate combinations. Develop irrigation	
	schedules to satisfy the design daily	
	irrigation requirements (DDIR) for specific	
	crops, citing specific textual evidence.	
11	Compare and contrast irrigation methods for	652–665, 674, 675
-	row crops, attending to such factors as	-,-,-
	water conservation, efficiency, and cost.	
	,,,	

Goodheart-Willcox Publisher

18604 West Creek Drive • Tinley Park, IL 60477 • 800.323.0440 • www.g-w.com

r				
	Investigate and document findings on the			
	effectiveness and efficiency of a surface			
	irrigation versus a drip irrigation method,			
	developing claim(s) and counterclaim(s) for			
	scenarios in which each method would be			
	most applicable.			
Agricultural Structures				
12	Interpret plans and working drawings to	226–248, 258–261, 273, 277, 308–310, 323, 355–		
	select appropriate building materials for a	357, 370, 371, 389–390, 432, 709–712, 741		
	given agricultural structure. Using correct			
	units and measurements, draft a written bill			
	of materials enumerating the quantities of			
	each selection, including but not limited to			
	concrete, masonry, wood, metal, and			
	composite materials.			
13	Applying construction principles pertaining	308–320, 350–367, 381–399, 403, 406–428, 431,		
	to wood, concrete, metal, masonry,	432, 549–564, 567, 586–594, 597, 626–642, 645,		
	plumbing and electricity construct or repair	661–671, 675		
	an agricultural structure according to			
	prescribed working plans.			
Agricultural Metalworking				
14	Compare and contrast the physical and	744–763, 766–771, 778–813, 817, 820–851,		
	chemical properties of arc welding, metal	854, 855, 858–873, 876–877		
	inert gas (MIG) welding, gas welding,			
	soldering, and brazing. Demonstrate the			
	ability to precisely follow operational and			
	safety procedures for each fusion process			
	across various applications.			
15	Classify the physical and chemical properties	744–766, 774, 775, 880–892, 894, 895		
	associated with various metal-cutting			
	methods. Demonstrate adherence to			
	operational and safety procedures for using			
	oxy-fuel or plasma in applications involving			
	mild steel, copper, sheet metal, and cast			
	iron.			
16	Select and demonstrate the best method to	230–246, 253, 633–642, 665–667, 730–738,		
	construct, connect, or repair metallic and	741, 875		
	non-metallic materials for a variety of			
	agricultural applications, including but not			
	limited to plumbing, sheeting, and			
	equipment.			